Data Warehouse Design

| July 10, 2017

Over this series of four posts, I explore the keys to a successful data warehouse, starting with data warehouse design. The topics for future posts are: build, operation, and maintenance.

Designing a Data Warehouse

In the design of a data warehouse and, indeed, over the entire warehouse journey, the most important principle to keep in mind is that what you are delivering is a cross-functional, long-life foundation for data provision and decision support. Let’s parse that out:

  1. Cross-functional may, in some cases, extend to cover the entire enterprise; in other cases, it may address only the needs of the different departments in a business unit. In either case, the data warehouse must be able to satisfy the unique needs of multiple decision support projects from diverse groups of business users.
  2. Long-life means that these projects will arise and mutate over many years; they cannot be known in advance when you first design your initial data warehouse.
  3. As a foundation for data provision, the data warehouse must provide consistent, reconciled, legally-binding data to its various business clients, to ensure that decisions made are reliable, auditable, and non-contradictory.

These characteristics have long bedeviled the design (and subsequent phases) of the process of delivering a data warehouse. If you have delivered a data mart, for example, you will know that you must meet the specific and (reasonably) well-known data needs of a single department, usually as quickly as possible. If you delivered input to a data lake, you will understand that flexibility of use—often called schema-on-read—is of paramount importance. Data marts and lakes are projects; a data warehouse is a process consisting of multiple projects, which must work together toward the goals outlined above.

Enterprise Data Model

At the heart of this process is a vision of what the data in the warehouse should ultimately look like. This vision is best described by an enterprise data model (EDM), consisting of the high-level entities that a business must track: customers, products, orders, and so on. (In Bill Inmon’s terminology, these are called subject areas.) In the past, EDMs were often built from scratch, a process that provided data modelers with jobs for life, but frustrated the business users who were drawn into drawn-out definitional debates rather than seeing the results they needed.

Today, many EDMs are customized from standard industry models—a much faster and easier process. After all, how different are the characteristics of customers, for example, across various banks? In many more cases, an EDM already exists within the organization as a result of previous data warehouse or other enterprise-wide undertakings, such as master data management, for example.

Data Warehouse Challenges

The major design challenge for today’s data warehouses is defining and refining the logical (and ultimately physical) structure of the relational tables of the data warehouse. Ultimately, a good design must take into account the limitations of the source systems, the challenges in joining data from multiple sources, and the possibility of changes in both business needs and source system structures over time. These are topics for later posts focusing on build and maintenance concerns. For now, we focus on how to achieve the “ideal structure” to facilitate loading, updating and using data warehouse tables.

3NF

The traditional design approach recommends mapping high-level entities to “loosely normalized” tables—based initially on third normal form (3NF), but relaxed sufficiently to ease population and querying performance issues that arise from strict 3NF implementation. The goal of this approach is to create a cross-enterprise, functionally neutral set of data that can be used for a wide variety of query, analysis, and reporting needs.

3NF was originally designed to ensure insert/update/delete consistency of operational databases, as was thus suboptimal for data warehousing. Ralph Kimball proposed an alternative approach in the 1990s known as dimensional or star-schema models. While widely used—mainly because it promises faster delivery of decision support projects—its design is also suboptimal for a data warehouse, being highly optimized for slice-and-dice analysis, and driven by the specific business needs of a particular department. In essence, it is more suitable for a data mart than a data warehouse.

Data Vault

In the early 2000s, Dan Linstedt defined the Data Vault Model, a hybrid of the normalized and star schema forms above, which better balances the generality of loosely normalized and the delivery speed of dimensional models. The Data Vault is a detail-oriented, history-tracking, specially linked set of normalized tables designed to support multiple functional business areas. The model consists of three specialized types of entities/tables: hubs based on rarely changed business keys, links that describe associations or transactions between business keys, and satellites that hold all temporal and descriptive attributes of business keys and their associations. Version 2.0, introduced in 2013, consisting of a data model, methodology, and systems architecture, provides a design basis for data warehouses that emphasizes core data quality, consistency, and agility to support enterprise-wide data provision needs.

With design sorted, it’s time to move to the build phase. That is the topic of the next post.

You can find the other blog posts in this series here:


Dr. Barry Devlin is among the foremost authorities on business insight and one of the founders of data warehousing, having published the first architectural paper on the topic in 1988. Barry is founder and principal of 9sight Consulting. A regular blogger, writer and commentator on information and its use, Barry is based in Cape Town, South Africa and operates worldwide. 

Webinar Recap: Navigating the Future of Data Analytics

In an era where data is the new gold, understanding its trajectory is crucial for any forward-thinking organization. Our recent webinar, "Capitalizing on Data Analytic Predictions by Focusing on Cross-Functional Value of Automation and Modernization," hosted in...

Introducing: Data Automation Levels

The concept of automation has seamlessly integrated into many aspects of our lives, from self-driving cars to sophisticated software systems. Recently, Mercedes-Benz announced their achievement in reaching Level 3 in automated driving technology, which got me thinking...

Agile Data Warehouse Design for Rapid Prototyping

Agile Prototyping: Revolutionizing Data Warehouse Design While most people know WhereScape for its automated code generator that eradicates repetitive hand-coding tasks, there is another major way in which the software can save huge amounts of time and resources....

Data Fabric: Streamlining Unified Data Management

In the dynamic landscape of modern enterprises, the integration of data fabric solutions has emerged as a pivotal strategy to streamline and enhance data processes. These innovative solutions blend diverse data delivery technologies, creating flexible pipelines,...

Mastering Data Vault 2.0: A Comprehensive Webinar Recap

The "Mastering Data Vault 2.0: Insights from Pioneers and Practitioners" webinar, moderated by Dan Linstedt, Founder of Data Vault Alliance, brought together an esteemed panel of experts.  The session included Matthew Bower and Brian Harney, Solution Architects...

Related Content

Introducing: Data Automation Levels

Introducing: Data Automation Levels

The concept of automation has seamlessly integrated into many aspects of our lives, from self-driving cars to sophisticated software systems. Recently, Mercedes-Benz announced their achievement in reaching Level 3 in automated driving technology, which got me thinking...

Webinar Recap: Navigating the Future of Data Analytics

Webinar Recap: Navigating the Future of Data Analytics

In an era where data is the new gold, understanding its trajectory is crucial for any forward-thinking organization. Our recent webinar, "Capitalizing on Data Analytic Predictions by Focusing on Cross-Functional Value of Automation and Modernization," hosted in...

Introducing: Data Automation Levels

Introducing: Data Automation Levels

The concept of automation has seamlessly integrated into many aspects of our lives, from self-driving cars to sophisticated software systems. Recently, Mercedes-Benz announced their achievement in reaching Level 3 in automated driving technology, which got me thinking...

Agile Data Warehouse Design for Rapid Prototyping

Agile Data Warehouse Design for Rapid Prototyping

Agile Prototyping: Revolutionizing Data Warehouse Design While most people know WhereScape for its automated code generator that eradicates repetitive hand-coding tasks, there is another major way in which the software can save huge amounts of time and resources....