Select Page

Data Warehouse Development

By WhereScape
| April 16, 2020

Dr Barry Devlin is among the foremost authorities on business insight and one of the founders of data warehousing, having published the first architectural paper on the topic in 1988. Today he is a leading consultant and speaker on data warehouse development.

Barry has published a number of articles for WhereScape, to follow you will find a synopsis and introduction to some of these. Each has a link to the full blog so you can explore that specific subject in more detail.

Designing a Data Warehouse

Always keep in mind the basic goal of your project: to deliver a cross-functional, long-life foundation for data provision and decision support. Data warehouse development project types vary and will continue to mutate over time with requirements that you cannot predict now, and your data warehouse must continue to provide accurate data throughout this evolution.

This blog explains how to:

  • Use templates to save time and money rather than building from scratch
  • How to define and refine the logical structure of relational tables
  • Choose which approach of data modelling is best for you – 3NF, Star Schema, Data Vault etc.

Read the full blog here.

Building a Data Warehouse

This blog explains how every design is only as good as the reality of its source systems, their missing data and poorly defined data structures. The finished design is always a balance between the vision for the model and the constrains of the sources. The article covers:

Read the full blog here.

Operating a Data Warehouse

This blog explains how to deliver your data warehouse successfully to the business and run it smoothly on a daily basis. We must avoid the problems of past ad hoc data warehouse development approaches that combined manual and semi-automated methods, and adopt advanced data management and automation practices. Find out how:

  • Deployment needs to be treated as a long-term, monogamous relationship
  • To address issues such as packaging and installation of the code
  • To bundle sets of objects and transport from dev to QA and through to production
  • To handle interdependencies between the data warehouse, data marts and data lake
  • To automate the historical information that tracks performance over time

Read the full blog here.

Maintaining a Data Warehouse

In some development projects, once a piece of software is up and running it needs only minor bug-fixing, but maintaining a data warehouse needs more attention than that. The nature of creative decision-making support is that users are continuously discovering new business requirements, changing their mind about what data they need and thus demanding new data elements and structures on a weekly or monthly basis. Indeed, in some cases, the demands may arrive daily! Read this blog to find out:

  • What a data lake should and shouldn’t be used for
  • Why and how a Data Vault gives more agility in the maintenance phase
  • The role of metadata in data warehouse maintenance
  • How to predict downstream impact of changes from automated documentation

Read the full blog here.

Should You Use Data Vault on Snowflake? Complete Decision Guide

TL;DR Data Vault on Snowflake works well for: Integrating 20+ data sources with frequent schema changes Meeting strict compliance requirements with complete audit trails Supporting multiple teams developing data pipelines in parallel Building enterprise systems that...

A Step-by-Step Framework for Data Platform Modernization

TL;DR: Legacy data platforms weren't built for real-time analytics, AI workloads, or today's data volumes. This three-phase framework covers cloud migration, architecture selection (warehouse, lakehouse, or hybrid), and pipeline automation. The goal: replace brittle,...

How-to: Migrate On-Prem SQL Server to Azure

Migrating on-premises SQL Server to Azure shifts infrastructure management to the cloud while maintaining control over data workloads. Organizations move to Azure SQL Database, Azure SQL Managed Instance, or in some instances on-prem SQL Server on Azure run on virtual...

Data Governance in Healthcare: HIPAA Compliance Guide

TL;DR Healthcare data architects must integrate fragmented clinical systems (EHRs, PACS, LIS) while maintaining HIPAA-compliant lineage and clinical data quality. Data Vault modeling can help provide the audit trails regulators demand, but generates hundreds of tables...

Enterprise Data Warehouse Guide: Architecture, Costs and Deployment

TL;DR: Enterprise data warehouses centralize business data for analysis, but most implementations run over budget and timeline while requiring specialized talent. They unify reporting across departments and enable self-service analytics, yet the technical complexity...

What Is a Data Vault? A Complete Guide for Data Leaders

A data vault is a data modeling methodology designed to handle rapidly changing source systems, complex data relationships, and strict audit requirements that traditional data warehouses struggle to manage.  Unlike conventional approaches that require extensive...

New in 3D 9.0.6.1: The ‘Source Aware’ Release

When your sources shift beneath you, the fastest teams adapt at the metadata layer. WhereScape 3D 9.0.6.1 focuses on precisely that: making your modeling, conversion rules and catalog imports more aware of where data comes from and how it should be treated in-flight....

Related Content

A Step-by-Step Framework for Data Platform Modernization

A Step-by-Step Framework for Data Platform Modernization

TL;DR: Legacy data platforms weren't built for real-time analytics, AI workloads, or today's data volumes. This three-phase framework covers cloud migration, architecture selection (warehouse, lakehouse, or hybrid), and pipeline automation. The goal: replace brittle,...