In this engaging webinar tailored for Azure SQL...
Introducing the Data Vault Alliance

Today, at the WorldWide Data Vault Consortium (WWDVC) event in Stowe, Vermont, I launched the Data Vault Alliance, a new global community which seeks to unite Data Vault experts, vendors and practitioners and share best practices for Data Vault 2.0 with organizations worldwide. One of the primary reasons that I founded the Alliance was to provide IT practitioners with the right education, tools and resources to be successful with Data Vault 2.0 and reap its benefits for the organizations they serve as quickly as possible.
But what is a Data Vault, and why should organizations consider it? My colleague Michael Olschimke, CEO at Scalefree, discussed this in a recent webinar with WhereScape and here’s a quick explanation he shared:
A Quick Introduction
At a basic level, a Data Vault consists of three key categories of information:
- Hubs – unique lists of business keys
- Links – unique lists of relationships
- Satellites – descriptive data over time
The hub sits at the heart of the methodology and is then connected via links to other hubs or satellite information. This satellite information is where all the “color” of useful data is held – including historical tracking of values over time. Examples of satellite information could include customer data, location data or individual information streams from different business units.

Together, combinations of these categories form the “network” of a Data Vault, a way of connecting together bits of information in a flexible, repeatable way that can enable a consistent development stream. At its core, using Data Vault 2.0 methodology helps businesses fuse together many different data streams from varying sources, in such a way as can deliver actionable, useable information for end users.
How Does a Data Vault Process Information?
The usual workflow for a Data Vault environment follows four stages:
- Data is loaded from the source into either a relational data system or a data lake
- Data is then broken down into individual “lego brick” components, and then built in a more targeted manner using simple ETL driven by metadata
- One information is regrouped, enterprise business rules can be applied to turn these individual data fragments into useful information
- Lastly, an overarching schema is applied – whether that is a star schema or a snowflake schema or something else entirely, this create the basis to overlay a dashboard tool ready to present back insights
At the end of this process, a fully formed Data Vault provides a solution that is almost “self-service business intelligence”, as well as a raw data stream where power users can create and write back solutions to their own user area, without affecting the core IT data warehouse. The question is, how do we get there?
Data vault automation can play a critical role here. As this workflow remains a constant repeatable process in the Data Vault, it is perfect for applying automaton to help organizations realize the benefits, faster. WhereScape® Data Vault Express™ offers exactly this capability – allowing businesses to achieve scalability and data consistency, as well as reaping the benefits of Data Vault 2.0 sooner.
For those wishing to learn more about Data Vault 2.0, and deepen their expertise in Data Vault 2.0 modeling, methodology and architecture, the Data Vault Alliance can provide you with access to world-class training, professional development certifications, organizational assessment tools, directories of authorized Data Vault 2.0 vendors and mentoring opportunities. You can view this video to learn more about the Data Vault Alliance. I encourage you to take a look at this new online community today.
And for those of you attending the WWDVC, I hope the knowledge and experience our presenters share at this week’s event provide you with many practical ideas to take back and implement within your organizations. It’s an exciting time for the Data Vault community, and if you aren’t yet applying Data Vault 2.0, now is the perfect time for you to learn more and evaluate if it is right for your organization.
New in RED 10.5: Streamlined Install, Smarter Upgrades & Enterprise Scale
For many teams, the hardest part of progress isn’t always about what they’re building - instead, it’s staying current, without slowing down. WhereScape RED 10.5 has been developed with that thought squarely in mind. This new release reduces the steps between “we...
Implementing the Medallion Lakehouse on Microsoft Fabric – Fast – with WhereScape
Organizations arriving at Microsoft Fabric often share the same first impression: the platform brings the right ingredients together—OneLake for storage, Data Factory for movement, a lake-centric Fabric Warehouse for SQL performance, and governance that spans the...
Accelerate Microsoft Fabric Adoption with WhereScape Automation
As organizations embrace Microsoft Fabric to streamline their analytics infrastructure, they quickly encounter the complexity inherent in managing multiple integrated components. Microsoft Fabric’s extensive capabilities—from OneLake storage and Data Factory pipelines...
Demystifying Microsoft Fabric Components for Business & Technical Users
Microsoft Fabric is rapidly becoming the go-to solution for enterprises aiming to consolidate their analytics processes under a single comprehensive platform. However, understanding the full scope and function of its components can initially seem daunting to both...
An Introduction to Microsoft Fabric: Unifying Analytics for Enterprises
In today's data-driven world, enterprises face an ever-growing demand to harness data efficiently. The complexity of managing diverse and expansive data sources often presents significant challenges. Microsoft Fabric has emerged as a comprehensive solution designed to...
WhereScape at TDWI Munich: Automate Data Vault on Databricks
WhereScape at TDWI Munich 2025: Automate a Full Data Vault on Databricks in Just 45 Minutes June 24–26, 2025 | MOC Munich, Germany As data complexity grows and business demands accelerate, scalable and governed data architectures are no longer optional—they're...
What Is OLAP? Online Analytical Processing for Fast, Multidimensional Analysis
Streamline your data analysis process with OLAP for better business intelligence. Explore the advantages of Online Analytical Processing (OLAP) now! Do you find it challenging to analyze large volumes of data swiftly? A Forrester study reveals that data teams spend...
Build AI-Ready Data: Visit WhereScape at AI & Big Data Expo
June 4–5, 2025 | Booth 202 | Santa Clara Convention Center As organizations scale their artificial intelligence and analytics capabilities, the demand for timely, accurate, governed, and AI-ready data has become a strategic priority. According to Gartner, through...
Automating Star Schemas in Microsoft Fabric: A Webinar Recap
From Data Discovery to Deployment—All in One Workflow According to Gartner, data professionals dedicate more than half of their time, 56%, to operational tasks, leaving only 22% for strategic work that drives innovation. This imbalance is especially apparent when...
What is a Data Model? How Structured Data Drives AI Success
What is a data model? According to the 2020 State of Data Science report by Anaconda, data scientists spend about 45% of their time on data preparation tasks, including cleaning and loading data. Without well-structured data, even the most advanced AI systems can...