As organisations focus more than ever on data strategy, they encounter a range of opportunities to take control of the factors that influence success, as the insight available from the effective data analysis helps improve decision making and builds competitive advantage. The transformational potential of data has not been lost on business leaders, who have tasked their technical teams with harnessing its power to deliver bottom line benefits.

As a result, organisations increasingly rely on data warehouse technologies to store, manage and analyse datasets that are often growing at an accelerating rate. By offering a curated repository of data, data warehouses are valued by users who need access to the right information in a usable format. 

This is distinct from other approaches such as data lakes that act as huge collections of data, ranging from raw data that has not been organised or processed, through to varying levels of curated data sets. Ideal for some of the newer use cases such as Data Science, AI and machine learning, for more traditional analytics, data lakes can, however, be unwieldy and confusing. 

As a result, many organisations opt for data warehouse solutions to manage essential data in more structured environments. However, working out how to speed up the rollout and management of these practices using technologies such as automation is essential if organisations are going to minimise the time to value and succeed in the data-driven business landscape.

Read the full article on datacentremagazine.com here.