Are you eager to delve deep into the challenges...
Locking in a Data Vault
So, I’m playing a little with words here. I’m certainly not advocating locking anybody or anything in a Data Vault. I want to share how you can lock in success as you design and deliver your new Data Vault. I assume you have your business people fully on board as discussed in this recent blog. If not, I advise you to go back and do that first. This blogpost is aimed to specifically assist your development team.
Most of us are challenged by change. And developers are little different. They are typically very comfortable with a set of design approaches and tools learned in the past and it routinely frames their perspective on how to tackle the future. Combining the comfort of old ways with the tight timeframes and pressures of today’s business requests seldom leads to taking time to explore new options. As a result, it is easy for teams to be weighed down by outdated, limiting approaches to data infrastructure.
What we’ve learned with the evolution of the Data Vault methodology and data warehouse automation (DWA) over the past decade is that some areas within the data warehouse development process are broken. Dan Linstedt and the other contributors to the Data Vault model in the early 2000’s recognized early on that the traditional data models were not able to meet the quality and agility goals of a data warehouse serving a modern data-focused business. I have provided some of this background in this recent white paper.
The Data Vault is constructed from some very carefully defined primitives, such as hubs, links and satellite tables, that must be defined and populated in specific ways to work as intended. If developers use old approaches or, worse still, make up new ones themselves, disaster will follow.
In Data Vault 2.0, Linstedt has provided a methodology to drive best practice in the design of the data model and in the development of the function that populates it. Methodologies are great: I rely on a wonderful methodology for manually raising my computer screen to the ideal height as I write this post. But, within development teams, such behavior will lead to inconsistent approaches to development; result in delays in future maintenance as other developers struggle to understand different coding styles; and ultimately will lead to a skills loss for your organization when your cleverest developer dies in a freak coding accident.
WhereScape® Data Vault Express addresses these issues by encoding the templates of the Data Vault components, and employing best practices in population processes and development methods within an automated, metadata-driven design and development environment. Starting in initial design collaboration between IT and business people, design choices are encoded in metadata to auto-generate the code and scripts responsible for defining Data Vault tables and populating them with the correct data, ensuring design consistency and completeness, and coding conformity to a single set of standards. Traceability is enforced and maintenance eased. Additionally, as your developers work, all is documented automatically—a task few enjoy or have the time to complete.
Locking in the Data Vault is all about maintaining consistency, ensuring complete documentation, and auto-generating best-practice model and code assets across design and development. As I discuss in this white paper Meeting the Six Data Vault Challenges and within this recent recorded webcast, data warehouse automation is the logical foundation. And while change is hard, development teams will benefit greatly from an openness to doing it differently.
Coming soon, some thoughts on Living in a Data Vault.
You can find the other blog posts in this series here:
Dr. Barry Devlin is among the foremost authorities on business insight and one of the founders of data warehousing, having published the first architectural paper on the topic in 1988. Barry is founder and principal of 9sight Consulting. A regular blogger, writer and commentator on information and its use, Barry is based in Cape Town, South Africa and operates worldwide.
Amplifying WhereScape’s Power with Yellowfin: Unveiling New Analytics Opportunities for Your Business
In an age dominated by vast amounts of information, the emphasis on data-driven decision-making has never been greater. The landscape of Business Intelligence (BI) and data analytics has seen a remarkable evolution, emphasizing solutions that can seamlessly integrate...
Data Mesh and Data Fabric: Changing the Game in Data Product Development
Data Mesh vs Data Fabric Data Mesh and Data Fabric are reshaping how organizations approach data product development. In an era where data-driven decisions are central to business success, these innovative paradigms are becoming increasingly crucial. By enabling...
WhereScape Announces the Release of RED 10.0.0.0
WhereScape is pleased to announce the general availability of WhereScape RED 10.0.0.0. This release is the culmination of man-years of effort. It confirms WhereScape’s commitment to continuing to develop new technologies and tools and its commitment to delivering the...
Effective AI through Data Modeling
As we journey deeper into the digital age, the importance of data modeling within the broader landscape of artificial intelligence (AI) has become more pronounced than ever. The success of AI-driven initiatives is tightly woven with the quality and structure of the...
Is Data Vault 2.0 Still Relevant?
TL;DR Yes. Data Vault 2.0 Data Vault 2.0 is a database modeling method published in 2013. It was designed to overcome many of the shortcomings of data warehouses created using relational modeling (3NF) or star schemas (dimensional modeling). Speci fically, it...
Data Vault 2.0 Resources
Data Vault Revisited: A Six-Year Journey into the Secure Data Repository In 2017, Dr. Barry Devlin provided valuable insights about Data Vaults, a concept that sparked interest among businesses and IT professionals. Data Vaults were envisioned as secure repositories...
Understanding Data Vault 2.0
How to Avoid Pitfalls During Data Vault 2.0 Implementation Implementing a data vault as your Data Modeling approach has many advantages, such as flexibility, scalability, and efficiency. But along with that, one must be aware of the challenges that come along with...
Navigating the AI Landscape
The Pivotal Role of Data Modeling In the rapidly evolving digital age, artificial intelligence (AI) has emerged as a game-changer, deeply impacting the business landscape. Its ability to automate operations, refine decision-making processes, and significantly enhance...
Information Management Maturity
Unlocking Your Business Potential: Understanding and Enhancing Information Management Maturity In a recent report by Gartner, they emphasize the crucial role of information in the current business environment, stating, "Through 2025, organizations that are data-driven...
Data Warehousing Best Practices
In modern times, organizations are daily generating huge volumes of data. Appreciating the significance of data, companies are storing data from different departments which can be analyzed to gather insights to help the organization in better decision-making. This...
Related Content

Amplifying WhereScape’s Power with Yellowfin: Unveiling New Analytics Opportunities for Your Business
In an age dominated by vast amounts of information, the emphasis on data-driven decision-making has never been greater. The landscape of Business Intelligence (BI) and data analytics has seen a remarkable evolution, emphasizing solutions that can seamlessly integrate...

Data Mesh and Data Fabric: Changing the Game in Data Product Development
Data Mesh vs Data Fabric Data Mesh and Data Fabric are reshaping how organizations approach data product development. In an era where data-driven decisions are central to business success, these innovative paradigms are becoming increasingly crucial. By enabling...

WhereScape Announces the Release of RED 10.0.0.0
WhereScape is pleased to announce the general availability of WhereScape RED 10.0.0.0. This release is the culmination of man-years of effort. It confirms WhereScape’s commitment to continuing to develop new technologies and tools and its commitment to delivering the...

Effective AI through Data Modeling
As we journey deeper into the digital age, the importance of data modeling within the broader landscape of artificial intelligence (AI) has become more pronounced than ever. The success of AI-driven initiatives is tightly woven with the quality and structure of the...